琥珀百科 手机版
当前位置: 首页 --> 常识 -->

抛物线一般方程怎么推导(抛物线的基础知识)

2024-09-14 10:20:54

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

抛物线

定义

右开口抛物线:y2=2px

左开口抛物线:y2=-2px

上开口抛物线:x2=2py

下开口抛物线:x2=-2py

(p>0)[p为焦准距]

特点:

在抛物线y2=2px中,焦点是(p/2,0),准线的方程是x=-p/2,离心率e=1,范围:x≥0;

在抛物线y2=-2px中,焦点是(-p/2,0),准线的方程是x=p/2,离心率e=1,范围:x≤0;

在抛物线x2=-2py中,焦点是(0,p/2),准线的方程是y=-p/2,离心率e=1,范围:y≥0;

在抛物线x2=2py中,焦点是(0,-p/2),准线的方程是y=p/2,离心率e=1,范围:y≤0;

(对于向右开口的抛物线y2=2px) 

离心率:e=1(恒为定值,为抛物线上一点与准线的距

二次函数的图像是一条抛物线

离以及该点与焦点的距离比)

焦点:(p/2,0)

准线方程l:x=-p/2

顶点:(0,0)

通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦

定义域:对于抛物线y2=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x2=2py,定义域为R。

值域:对于抛物线y2=2px,值域为R,对于抛物线x2=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。